Epoxy-bridged [19]- and [21]-Annulenones

By Terry M. Cresp and Melvyn V. Sargent,* Department of Organic Chemistry, University of Western Australia, Nedlands, W.A. 6009, Australia

Wittig reaction between carbonyldi(furan-2.5-diyl)dimethylenebis(triphenylphosphonium chloride) (1) and 2.5-bis-(β-formylvinyl)furan (2) gave chiefly ($6 Z .8 E .14 E .16 Z$)-2.5:10.13:18.21-triepoxy[21]annulenone (4). Although the inner protons of annulenone (4) resonate at low field this is shown to be due to mutual steric compression rather than a paramagnetic ring current. A synthesis of 1.4 -bis-(2 -formylcyclohex-1-enyl)buta-1.3diyne (20) is described. This on reaction with the salt (1) gave ($6 E .16 E$)-2.5:18.21-diepoxy-8.9:14.15bis(tetramethylene) $-10,11.12 .13$-tetradehydro[21]annulenone (24). which was also atropic. Wittig reaction between the salt (1) and 5 -(β-formylvinyl)-2-furaldehyde (33) gave (6Z.12E.14Z)-2.5:8.11:16.19-triepoxy[19]annulenone (34) which is diatropic.

In a previous paper ${ }^{1}$ we explored the paratropicity of heteroatom-bridged [17]annulenones. We now describe extensions of this work, which has already appeared in
${ }^{1}$ T. M. Cresp and M. V. Sargent, J.C.S. Perkin I, 1973, 2961.
${ }^{2}$ T. M. Cresp and M. V. Sargent, J.C.S. Chem. Comm., 1974, 101.
preliminary form, ${ }^{2}$ to epoxy-bridged [19]- and [21]annulenones.

It has been predicted ${ }^{3}$ that the limiting ring size for aromaticity in the $(4 n+2)$ annulene series would be
${ }^{3}$ M. J. S. Dewar and G. J. Gleicher, J. Amer. Chem. Soc., 1965, 87, 685.
reached at [26]annulene although doubt has been cast on this prediction by the synthesis of a diatropic didehydro[26]annulene ${ }^{4, *}$ and an allegedly diatropic tetradehydro[30]annulene. ${ }^{5}$ Similarly the question of limiting ring size for the paratropicity of $4 n$ annulenes has yet to be resolved. Since little theoretical work ${ }^{6}$ has been reported on the ring size limitation for diatropicity and paratropicity in annulenones we decided to extend our previous work to epoxy-bridged [19]- and [21]-annulenones.
by structure (3). The material left after removal of the isomer (3) failed to crystallise and was obtained as a red gum which was apparently homogeneous, since its n.m.r. spectrum indicated the symmetrical structure (4) (see below). The unsymmetrical isomer (3) must have arisen before chromatography since on re-chromatography the pure symmetrical isomer (4) was recovered unchanged even after 60 h on the column. The n.m.r. spectrum of the diacrolein (2) used in the reaction did not have any signals attributable to the cis,trans-isomer (5).

(1)

(3)

(5)
$+$

(2)

(4)

(6)

In a subsequent Wittig reaction between the salt (1) and a different batch of the diacrolein (2) none of the unsymmetrical isomer (3) was obtained. This suggests that in the initial Wittig reaction the diacrolein (2) was contaminated by its isomer (5) present in smaller amount than was detectable by n.m.r. spectroscopy. As the yield of the macrocycle (3) was only $7 \cdot 9 \%$ of the total yield of macrocyclic material isolated from the Wittig reaction this does not appear unlikely. On attempted photoisomerisation the diacrolein (2) decomposed.

The very low field resonance of the internal protons of the unsymmetrical [21]annulenone (3) indicates that it may be paratropic but in the absence of any other n.m.r. data no firm conclusion can be drawn.

Reduction of the symmetrical [21]annulenone (4) with

[^0]lithium aluminium hydride and aluminium chloride gave the homoannulene (6) as orange needles, m.p. 142-144 . Analysis of the n.m.r. spectrum of annulenone (4) confirmed the $(6 Z, 8 E, 14 E, 16 Z)$-stereochemistry $*$ of the diene systems. The furan protons 4 - and $19-\mathrm{H}$ are coupled to 6 - and $17-\mathrm{H}(J 1.0 \mathrm{~Hz})$, and these latter protons are cis-coupled to 7 - and $16-\mathrm{H}(J 11.7 \mathrm{~Hz})$. The internal protons 8 - and $15-\mathrm{H}$ are at different field from the other olefinic protons and resonate as a doublet of doublets coupled with 9 - and $14-\mathrm{H}$ ($J_{\text {trans }} 15 \cdot 3 \mathrm{~Hz}$), and 7- and $16-\mathrm{H}\left(J_{v i c .} 10.6 \mathrm{~Hz}\right)$.

If the [21]annulenone (4) is paratropic then in its n.m.r. spectrum the internal protons should resonate at low field and the external protons at high field. The internal protons 8 - and $15-\mathrm{H}$ resonate at significantly lower field than the external protons (Table 1). That the low field

Table 1

Chemical shifts ($\tau ; \mathrm{CDCl}_{3}, 90 \mathrm{MHz}$) of annulenone (4) and homoannulene (6)*							
mpound	$\begin{aligned} & 3-, \\ & 20-\mathrm{H} \end{aligned}$	$\begin{aligned} & 4- \\ & 19-\mathrm{H} \end{aligned}$	$\begin{gathered} 6-, \\ 17-\mathrm{H} \end{gathered}$	$\begin{gathered} 7- \\ 16-\mathrm{H} \end{gathered}$	$\begin{gathered} 8-, \\ 15-\mathrm{H} \end{gathered}$	$\begin{gathered} 9-, \\ 14-\mathrm{H} \end{gathered}$	$\underset{12-\mathrm{H}}{11-,}$
(4)	$2 \cdot 60$	$3 \cdot 44$	3.97	3.77	1.95	$3 \cdot 96$	3.95
(6)	4.04	$4 \cdot 04$	$4 \cdot 34$	4-12	$0 \cdot 89$	4.03	$4 \cdot 28$

* For convenience the numbering system of the annulenone
(4) has been used in the assignment of the chemical shifts of the homoannulene (6).
resonance of the internal protons is not due to a paramagnetic ring current in annulenone (4) is apparent from the n.m.r. spectrum of the homoannulene (6), in which the internal protons 8 - and $15-\mathrm{H}$ resonate at even lower field than those of the annulenone (4), and all the external protons resonate at higher field than the analogous protons of (4) (Table 1). The low field resonance of the internal protons of (4) and (6) is presumably due to the mutual steric compression of the internal protons ${ }^{8,9}$ and/or the deshielding effect of the furan oxygen atoms. ${ }^{1}$

To investigate further the deshielding of the internal protons a series of macrocyclic non-conjugated ketones and alkanes was prepared. Wittig reaction of bis-5(β-formylvinyl)-2-furyl ketone (10) ${ }^{7}$ with the phosphonium salts (7), ${ }^{10}(8),{ }^{11}$ and (9) ${ }^{11}$ gave the ketones (11)-(13) respectively. Reduction of the ketones (11)-(13) with lithium aluminium hydride and aluminium chloride then gave the corresponding alkanes (14)-(16).

Examination of molecular models of these compounds indicated that the internal proton-furan oxygen distance remains approximately constant throughout each of the series but that the distance between the two internal hydrogen atoms increases as n increases. This is reflected in the n.m.r. spectra of the macrocycles (Table 2). As n increases the resonances of the internal protons 7- and $7^{\prime}-\mathrm{H}$ are shifted to higher field but the

[^1]external protons remain at fairly constant field. Although these arguments can only be applied qualitatively they support the conclusion that the low field resonance of 8 - and $15-\mathrm{H}$ in the annulenone (4) is due to steric
\[

$$
\begin{gathered}
-\mathrm{BrPh}_{3} \stackrel{+}{\mathrm{P}}\left[\mathrm{CH}_{2}\right]{ }_{n} \stackrel{+}{\mathrm{PPh}_{3} \mathrm{Br}} \stackrel{-}{\mathrm{r}} \\
\text { (7) } n=3 \\
\text { (8) } n=4 \\
\text { (9) } n=5
\end{gathered}
$$
\]

(10)

compression rather than to a paramagnetic ring current. The chemical shifts of the furan protons adjacent to the carbonyl group are very sensitive to the effect of a paramagnetic ring current as is evident from the n.m.r.

Table 2
Chemical shifts ($\tau ; \mathrm{CDCl}_{3}, 90 \mathrm{MHz}$) for ketones (11)-(13) and alkanes (14)-(16)

Protons*	Chemical shift					
	Ketones			Alkanes		
	(11)	(12)	(13)	(14)	(15)	(16)
3, 3^{\prime}	$2 \cdot 70$	$2 \cdot 64$	$2 \cdot 48$	$3 \cdot 97$	$3 \cdot 93$	$3 \cdot 98$
4, 4^{\prime}	$3 \cdot 76$	$3 \cdot 71$	$3 \cdot 56$	$4 \cdot 04$	$3 \cdot 93$	3.98
6, 6^{\prime}	$3 \cdot 73$	$3 \cdot 78$	$3 \cdot 54$	$3 \cdot 83$	$3 \cdot 74$	$3 \cdot 82$
7, 7'	$1 \cdot 49$	1.94	$2 \cdot 87$	$2 \cdot 17$	$2 \cdot 67$	$2 \cdot 72$
$8,8^{\prime}$	$3 \cdot 94$	$3 \cdot 95$	$3 \cdot 77$	$3 \cdot 92$	$3 \cdot 85$	$3 \cdot 92$
$9,9^{\prime}$	$4 \cdot 39$	$4 \cdot 24$	$4 \cdot 22$	$4 \cdot 41$	$4 \cdot 33$	$4 \cdot 36$

* For ease of comparison a similar numbering system to the annulenone (4) has been adopted.
spectra of the heteroatom-bridged [17]annulenones. ${ }^{1}$ In annulenone (4) the chemical shifts of these furan protons, $3-, 20-, 4$-, and $19-\mathrm{H}$ are comparable to those of the similar protons $3-, 3^{\prime}, 4$-, and $4^{\prime}-\mathrm{H}$ in the atropic ketones (11)-(13). Thus the [21]annulenone is atropic.

To investigate further the possible paratropicity of [21]annulenones the tetradehydro[21]annulenone (24)

[^2]was synthesised. Treatment of 2 -hydroxymethylenecyclohexanone (17) ${ }^{12}$ with 2 -bromopropane and potassium carbonate in NN -dimethylformamide (DMF) gave 2-isopropoxymethylenecyclohexanone (18) in 72\% yield. This on reaction with lithium acetylide-ethylenediamine
can either undergo dehydration followed by removal of the protecting groups leading to dicarbaldehyde (21), or undergo removal of the protecting groups followed by dehydration leading to either of the isomeric dicarbaldehydes (20) or (21). That both (20) and (21) did not

complex ${ }^{13}$ gave the acetylenic alcohol (19). Oxidative coupling of compound (19) by using copper(II) acetate monohydrate in pyridine at 60° followed by treatment with dilute sulphuric acid gave the fully conjugated dicarbaldehyde (20) (37\%) and its isomer (21) (8\%).

(24)

(25)

A low yield of $(20)+(21)$ could also be obtained by the reaction of the ketone (18) with 1,4 -disodiobuta-1,3-diyne in a similar manner to the reaction of the latter with cyclohexanone. ${ }^{14}$ The intermediate (22) involved in the formation of the isomeric dicarbaldehydes (20) and (21)

[^3]interconvert under the reaction conditions was established by treating the pure isomers separately with dilute sulphuric acid under the same conditions as before, from which they were recovered unchanged. As none of the half-conjugated isomer (23) was detected it must be assumed that if formed it undergoes isomerisation to either or both the observed products. After our preliminary communication was submitted Muneyuki et al. ${ }^{15}$ independently described the same synthesis of the dicarbaldehyde (20); however these authors did not report the isolation of the minor isomeric product (21).
Wittig reaction of the bisphosphonium salt (1) and the dicarbaldehyde (20) in DMF with lithium methoxide as base gave the [21]annulenone (24) (2%) but the major product (26) (6\%) arose by nucleophilic addition of methanol to the dicarbaldehyde. With the weak nucleophile 1,5 -diazobicyclo[4.3.0]non-5-ene as base ${ }^{16}$ a 12% yield of the macrocycle (24) was obtained together with 6% of the difurylacetylene (27). The structure of the latter followed from its spectroscopic properties and

Scheme
its reduction to the difurylethane (28). The formation of the difurylacetylene (27) probably involves a base catalysed reaction in which the tautomeric form of the
${ }^{15}$ R. Muneyuki, M. Morimoto, M. Tanaka, T. Katakami, T. Kashitani, M. Iyoda, and M. Nakagawa, Bull. Chem. Soc. Japan, 1973, 46, 2565.
${ }^{16}$ H. Oediger, H.-J. Kabbe, F. Möller, and K. Eiter, Chem. Ber., 1966, 99, 2012.
dicarbaldehyde (20) undergoes cyclisation with subsequent rearrangement of the intermediate (see Scheme). Analogous reactions are known which involve the similar cyclisation of the tautomers of acetylenic ketones,
atropicity of the [21]annulenone (24) follows from the lower field resonance of the internal protons 7 - and $16-\mathrm{H}$ of the homoannulene (25) compared with the analogous protons of the annulenone (24) (see Table 3). Further-

(26)
viz. production of the furans (30) and (32) by acid treatment of propargylacetone (29) and base treatment of ethyl propargylacetoacetate (31), respectively. ${ }^{17}$

Muneyki et al. ${ }^{15}$ observed that heating the dicarbaldehyde (20) in xylene at 120° gave the difurylacetylene

(27): this reaction also occurs on heating the dicarbaldehyde (20) in DMF. Muneyki et al. regard their reaction as 'a symmetry allowed thermal process.' This view is based on a misconception of orbital symmetry controlled processes since a neutral species cannot cyclise to an odd-membered ring. It is probable that this apparently thermal reaction arises by catalysis by adventitious acid or base.

The [21]annulenone (24) formed maroon prisms, which decomposed at $>270^{\circ}$ without melting. Lithium aluminium hydride-aluminium chloride reduction of (24) gave the homoannulene (25) as yellow prisms, m.p.

(27)

(28)
more the external protons $3-, 20-$, $4-$, and $19-\mathrm{H}$ are at similar chemical shifts to those of the analogous protons $3-, 3^{\prime}-, 4^{-}$, and $4^{\prime}-\mathrm{H}$ of the atropic ketones (11)-(13).

The atropicity of both [21]annulenones (4) and (24) suggests that in the $(4 n+1)$ membered-ring, or $4 n$ r electron annulenones, the ring size becomes important at $n=5$.

Table 3
Chemical shifts ($\tau ; \mathrm{CDCl}_{3}, 90 \mathrm{MHz}$) for annulenone (24) and homoannulene (25) ${ }^{a}$

	Chemical shift			
Compound	3 3, 20-H	4-, 19-H	6-, 17-H	7-, 16-H
(24)	2.76	$3 \cdot 68$	$2 \cdot 27{ }^{6}$	$2 \cdot 33{ }^{\text {b }}$
(25)	3.99	3.99	$3 \cdot 85$	1.86

a For convenience the numbering system of the annulenone (24) has been used in the assignment of the chemical shifts of the homoannulene (25). ${ }^{b}$ These assignments may be reversed.
The largest known examples in the $(4 n+3)$ mem-bered-ring, or $(4 n+2) \pi$ electron annulenones, contain fifteen carbon atoms, ${ }^{18,19}$ and as expected they are diatropic. It was of interest to determine whether larger $(4 n+3)$ membered-ring annulenones exhibit diatropicity and towards this end the synthesis of a [19]annulenone was investigated.

Wittig reaction between the phosphonium salt (1) and 5 -(β-formylvinyl)-2-furaldehyde (33) ${ }^{7}$ gave the [19]annulenone (34) in 3% yield as small red prisms, m.p. $208-209^{\circ}$ (from ethanol). The 90 MHz n.m.r. spectrum

270-271 ${ }^{\circ}$ (decomp.). Molecular models indicate that (24) may readily adopt a planar conformation and that the distance between the internal hydrogens 7- and $16-\mathrm{H}$ is sufficiently large to have little effect on their chemical shifts. Effects from the furan oxygen atoms and the acetylenic bonds may be important. The

17 J. Cologne and R. Gelin, Compt. vend., 1953, 237\%, 393.
${ }^{18}$ C. P. Cotterell, G. H. Mitchell, F. Sondheimer, and G. M. Pilling, J. Amer. Chem. Soc., 1971, 93, 259.
of annulenone (34) was very complex and a partial first order analysis was made by the INDOR technique, monitoring at the frequencies of the protons 3 -, 18 -, and 13-H. It was not possible to assign definite signals to the protons $6-, 7-, 9-, 10-$, and $15-\mathrm{H}$. The spectrum $\left(\mathrm{CDCl}_{3}\right)$ exhibited a 2 H AB pattern $\left(J_{3,4}\right.$ or $\left.J_{17.18} 3 \cdot 8 \mathrm{~Hz}\right)$

19 H. Ogawa, M. Yoshida, and H. Saikachi, Tetrahedron Letters, 1972, 153.
centred at $\tau 1.86$ and 2.87 (3- and $4-\mathrm{H}$ or 18 - and $17-\mathrm{H}$), a 2 H AB pattern $\left(J_{3.4}\right.$ or $\left.J_{17,18} 3.8 \mathrm{~Hz}\right)$ at 2.07 and 2.95 (3- and $4-\mathrm{H}$ or 18 - and $17-\mathrm{H}$), a 1 H doublet $\left(J_{12,13}\right.$ $15.0 \mathrm{~Hz})$ at $2.61(12-\mathrm{H})$, a 5 H multiplet at $2.63-3.02$ $6-, 7-, 9-, 10-$, and $15-\mathrm{H}$), a 1 H doublet of doublets $\left(J_{13,14} 11.5, J_{14,15} 11.2 \mathrm{~Hz}\right)$ at $3.01(14-\mathrm{H})$, and a 1 H doublet of doublets ($J_{13,14} 11 \cdot 5, J_{12,13} 15 \cdot 0 \mathrm{~Hz}$) at 4.88 $(13-\mathrm{H})$. The addition of the lanthanide shift reagent $\mathrm{Eu}(\mathrm{fod})_{3}$ produced line broadening at a concentration which shifted significantly only protons $3-$ and $18-\mathrm{H}$. The use of solvents other than deuteriochloroform also failed to simplify the spectrum. From the coupling constants obtained by INDOR experiments monitoring at the frequency of the proton $13-\mathrm{H}$ the $12,13,14,15-$ diene system is trans,cis or cis,trans. If the acrolein (33) retains its stereochemical identity in Wittig reactions as was observed for the diacrolein (2) then the stereochemistry of the $12,13,14,15$-diene system is trans,cis. Should this stereochemistry be reversed then the conclusions (see below) concerning the diatropicity of annulenone (34) are unaltered. It is also assumed that the stereochemistry of the 6,7 -double bond is cis since molecular models indicate that a cyclic molecule cannot be obtained if this bond is trans. Furthermore in the n.m.r. spectrum of (34) only one olefinic proton occurs at very different field from the others.

Lithium aluminium hydride-aluminium chloride reduction of annulenone (34) gave the homoannulene (35) as a yellow gum. The highly complex n.m.r. spectrum $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right)$ was not amenable to analysis and exhibited a 12 H multiplet at $\tau 3 \cdot 22-3 \cdot 67$ (furan and olefinic H), and a 2 H singlet at $5 \cdot 95\left(\mathrm{CH}_{2}\right)$.

That the [19]annulenone (34) is diatropic is demonstrated by the high field resonance of the internal proton $13-\mathrm{H}$ compared to the adjacent protons 12 - and $14-\mathrm{H}$ external to the ring, and to all the olefinic protons of the homoannulene (34). Any effect due to the proximity of the internal protons to the furan oxygen atoms in annulenone (34) would deshield the internal proton. Further evidence for the diatropicity of (34) is the significantly lower field resonance of the protons 3-, 4-, 17-, and $18-\mathrm{H}$ when compared with the chemical shifts of the similar protons $3-, 3^{\prime}, 4$, and $4^{\prime}-\mathrm{H}$ in the atropic ketones (11)-(13).

It is therefore concluded that the ring size limitation for diatropicity in the $(4 n+3)$ membered-ring annulenones lies beyond $n=4$.

EXPERIMENTAL

General details have been given previously. ${ }^{1}$ Unless stated otherwise n.m.r. spectra were determined at 90 MHz for deuteriochloroform solutions. Where appropriate assignments were assisted by decoupling or INDOR experiments. Wittig reactions were performed with stirring under dry nitrogen at 90° (bath temperature), unless stated otherwise. After the addition of the base the cooled mixture was poured into water and then extracted exhaustively with ethyl acetate or ether, and any insoluble material was separated by filtration through kieselguhr. The combined extracts were washed with water ($4 \times$) and
then with saturated brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude product was then pre-adsorbed from dichloromethane on the stated adsorbent and chromatographed over the same adsorbent (total $3.5 \times 40 \mathrm{~cm}$) with ethyl acetate-light petroleum of an appropriate polarity as eluant.

Wittig Reaction between Carbonyldi(furan-2,5-diyl)dimethylenebis(triphenylphosphonium chloride) (1) and 2,5-Bis(β-formylvinyl)furan (2).-Lithium methoxide [from lithium (69.4 mg)] in absolute methanol (21.3 ml) was added over 5 h to the salt (1) $(3.93 \mathrm{~g})$ and the dicarbaldehyde (2) $(880 \mathrm{mg})$ in dry DMF (160 ml). Chromatography over Woelm basic alumina (activity I) yielded a red gum (224 mg , $15 \cdot 2 \%)$. This gave ($6 Z, 8 \mathrm{E}, 14 \mathrm{Z}, 16 \mathrm{E}$)-2,5:10,13:18,21-triepoxy[21]annulenone (3) (17.6 mg), as purple needles, m.p. 218-221 (from ethanol) (Found: M^{+}, 330.0877. ${ }^{12} \mathrm{C}_{21}{ }^{1} \mathrm{H}_{14}{ }^{16} \mathrm{O}_{4}$ requires $M, 330 \cdot 0892$), $\lambda_{\text {max. }}$ (EtOH) 275sh ($\varepsilon 21,700), 298 \mathrm{sh}(27,300), 328(62,100), 350(52,400)$, and 535 nm (850), n.m.r., see Discussion section. From the mother liquors ($6 Z, 8 \mathrm{E}, 14 \mathrm{E}, 16 \mathrm{Z}$)-2,5:10,13:18,21-triepoxy[21]annulenone (4) was obtained as a red gum which failed to crystallise from a variety of solvents (Found: M^{+}, $330 \cdot 0897 .{ }^{12} \mathrm{C}_{21}{ }^{1} \mathrm{H}_{14}{ }^{16} \mathrm{O}_{4}$ requires $M, 330 \cdot 0892$), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ $284 \operatorname{sh}(\varepsilon 34,500)$, $315 \operatorname{sh}(52,100), 326(57 \cdot 200)$, $440(5400)$, and $462 \mathrm{sh} \mathrm{nm} \mathrm{(5000)}, \mathrm{\tau} 1.95\left(2 \mathrm{H}, \mathrm{dd}, J_{8.9}=J_{14.15} 15 \cdot 3\right.$, $J_{7.8}=J_{15.16} 10.6 \mathrm{~Hz}, 8-$ and $\left.15-\mathrm{H}\right), 2.60\left(2 \mathrm{H}, \mathrm{d}, J_{3.4}=\right.$ $J_{19,20} 3.5 \mathrm{~Hz}, 3-$ and $20-\mathrm{H}$), $3.44\left(2 \mathrm{H}, \mathrm{dd}, J_{4.6}=J_{17.19} 1 \cdot 0\right.$, $J_{3.4}=J_{18.20} 3.5 \mathrm{~Hz}, 4-$ and $\left.19-\mathrm{H}\right), 3.77\left(2 \mathrm{H}, \mathrm{dd}, J_{6.7}=\right.$ $J_{16.17} 11.7, J_{7.8}=J_{15.16} 10.6 \mathrm{~Hz}, 7$ - and $\left.16-\mathrm{H}\right), 3.96(2 \mathrm{H}, \mathrm{d}$, $J_{8.9}=J_{14.15} 15.3 \mathrm{~Hz}, 9-$ and $\left.14-\mathrm{H}\right), 3.97\left(2 \mathrm{H}, \mathrm{dd}, J_{6,7}=\right.$ $J_{16,17} \mathrm{ll} \cdot 7, J_{4.6}=J_{17.19} 1.0 \mathrm{~Hz}, 6$ - and $17-\mathrm{H}$), and 3.95 $(2 \mathrm{H}, \mathrm{s}, 11-\mathrm{and} 12-\mathrm{H})$.
(5Z,7E, 13E,15Z)-1,4:9,12:17,20-Triepoxycycloheneicosa-$1,3,5,7,9,11,13,15,17,19$-decaene (6).-The annulenone (4) $(226.9 \mathrm{mg})$ in a little dry ether was added to a stirred mixture of lithium aluminium hydride (500 mg) and aluminium chloride (30 mg) in dry ether (50 ml). The mixture was then stirred for 15 min and cooled in ice, and enough saturated ammonium chloride solution was added to promote coagulation. The coagulate was filtered off and washed well with ether. The ethereal filtrate was washed with saturated brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent left the homoannulene (6) which crystallised from light petroleum as orange needles ($182.9 \mathrm{mg}, 84 \cdot 2 \%$), m.p. 142-144 (Found: C, 79.85 ; H, 5•15. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 79.75 ; \mathrm{H}, 5 \cdot 1 \%$. Found: $M^{+}, 316.1102 .{ }^{12} \mathrm{C}_{21}{ }^{1} \mathrm{H}_{16}{ }^{16} \mathrm{O}_{3}$ requires $M, 316.1099$), $\tau^{*} 0.89\left(2 \mathrm{H}, \mathrm{ddd}, J_{7.8}=J_{15.16}\right.$ $9 \cdot 8, J_{6.8}=J_{15.17} 1 \cdot 7, J_{8,9}=J_{14.15} 14.8 \mathrm{~Hz}, 8$ - and $\left.15-\mathrm{H}\right)$, $4.03\left(2 \mathrm{H}, \mathrm{d}, J_{8.9}=J_{14.15} 14.8 \mathrm{~Hz}, 9-\right.$ and $\left.14-\mathrm{H}\right), 4.04 \mathrm{br}$ $(4 \mathrm{H}, \mathrm{s}, 3-, 4,19-$, and $20-\mathrm{H}), 4 \cdot 12\left(2 \mathrm{H}, \mathrm{dd}, J_{7,8}=J_{15,16}\right.$ $9.8, J_{6.7}=J_{16.17} 11.2 \mathrm{~Hz}, 7-$ and $\left.16-\mathrm{H}\right), 4.28(2 \mathrm{H}, \mathrm{s}, 11-\mathrm{and}$ $12-\mathrm{H}), 4.34\left(2 \mathrm{H}, \mathrm{dd}, J_{6.8}=J_{15.17} 1.7, J_{6.7}=J_{16.17} 11.2 \mathrm{~Hz}\right.$, 6 - and $17-\mathrm{H})$, and $5 \cdot 95 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$.
(6E,8Z,11Z,13E)-2,5:15,18-Diepoxycyclo-octadeca-
2,4,6,8,11,13,15,17-octaenone (11).-Lithium ethoxide [from lithium (69.4 mg)] in absolute ethanol (15.8 ml) was added over 6 h to bis-5-(β-formylvinyl)-2-furyl ketone (10) (1.35 g) and the phosphonium salt (7) (3.63 g) in dry DMF (120 ml). Chromatography over silica gel gave the ketone (11) ($206.6 \mathrm{mg}, 14.9 \%$) which crystallised from methanol as orange blades, m.p. $171-174^{\circ}$, which rapidly decomposed, $m / e 278\left(M^{+}\right), \lambda_{\text {max }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 258 \operatorname{sh}(\varepsilon 29,200), 277(36,400)$, $298(36,600)$, and 350 sh $\mathrm{nm}(19,500)$ with tailing into the

[^4]visible region, $\tau \dagger 1 \cdot 49\left(2 \mathrm{H}, \mathrm{dd}, J_{6.7}=J_{6^{\prime} \cdot 7^{\prime}} 15 \cdot 8, J_{7,8}=\right.$ $J_{7^{\prime} .8^{\prime}} 11 \cdot 0 \mathrm{~Hz}, 7-$ and $\left.7^{\prime}-\mathrm{H}\right), 2 \cdot 70$ and $3.76(4 \mathrm{H}, \mathrm{ABq}$, $J_{3.4}=J_{3^{\prime} .4^{\prime}} 3.5 \mathrm{~Hz}, 3-, 3^{\prime}-, 4-$, and $\left.4^{\prime}-\mathrm{H}\right), 3.73(2 \mathrm{H}, \mathrm{d}$, $J_{6.7}=J_{6^{\prime} .7^{\prime}} 15.8,6-$ and $\left.6^{\prime}-\mathrm{H}\right), 3.94\left(2 \mathrm{H}\right.$, dd, $J_{8.9}=$ $J_{8^{\prime}, 9^{\prime}} 10 \cdot 2, J_{7.8}=J_{7^{\prime}, 8^{\prime}} 11 \cdot 0 \mathrm{~Hz}, 8$ - and $\left.8^{\prime}-\mathrm{H}\right), 4.39(2 \mathrm{H}, \mathrm{dt}$, $J_{8,9}=J_{8^{\prime} \cdot 9^{\prime}} 10 \cdot 2, J_{9 . \mathrm{CH}_{2}}=J_{9^{\prime}, \mathrm{OH}_{2}} 9 \cdot 8 \mathrm{~Hz}, 9$ - and $\left.9^{\prime}-\mathrm{H}\right)$, and $6.6 \mathrm{Ibr}\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; in addition fine coupling was observed between $7-$ and $7^{\prime}-\mathrm{H}$, and $9-$ and $9^{\prime}-\mathrm{H}$.
(6E,8Z, 12Z, 14E)-2,5:16,19-Diepoxycyclononadeca-
$2,4,6,8,12,14,16,18$-octaenone (12).-Lithium ethoxide [from lithium (69.4 mg)] in absolute ethanol (19.2 ml) was added over 1.5 h to the diacrolein $(10)(1.35 \mathrm{~g})$ and the phosphonium salt (8) (3.70 g) in dry DMF (120 ml). Chromatography over silica gel yielded the ketone (12) ($259.6 \mathrm{mg}, 17 \cdot 7 \%$) which crystallised from light petroleum as orange prisms, m.p. $1^{165-1688^{\circ}}$ (Found: $M^{+}, \quad 292 \cdot 1096 .{ }^{12} \mathrm{C}_{19}{ }^{1} \mathrm{H}_{16}{ }^{16} \mathrm{O}_{3}$ requires $M, 292 \cdot 1099$), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 258 \mathrm{sh}(\varepsilon 29,200), 280$ $(45,900), 298(38,300), 345(17,100), 413(3400)$, and 430 nm (3300), $\tau \dagger 1 \cdot 94$ ($2 \mathrm{H}, \mathrm{dd}, J_{6,7}=J_{6^{\prime}, 7^{\prime}} 15 \cdot 0, J_{7,8}=J_{7^{\prime} 8^{\prime}}$. $11.0 \mathrm{~Hz}, 7-$ and $\left.7^{\prime}-\mathrm{H}\right), 2.64$ and $3.71\left(4 \mathrm{H}, \mathrm{ABq}, J_{3,4}=\right.$ $J_{3^{\prime} 4^{\prime}} 3.6 \mathrm{~Hz}, 3$-, $3^{\prime}-, 4-$, and $\left.4^{\prime}-\mathrm{H}\right), 3.95\left(2 \mathrm{H}\right.$, dd, $J_{8,9}=$ $J_{8^{\prime}, 9^{\prime}} 10 \cdot 5, J_{7.8}=J_{7^{\prime}, 8^{\prime}} 11.0 \mathrm{~Hz}, 8$ - and $\left.8^{\prime}-\mathrm{H}\right), 3.78(2 \mathrm{H}, \mathrm{d}$, $J_{6.7}=J_{6^{\prime} .7^{\prime}} 15 \cdot 0 \mathrm{~Hz}, 6-$ and $\left.6^{\prime}-\mathrm{H}\right), 4 \cdot 24 \mathrm{br}(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{and}$ $9^{\prime}-\mathrm{H}$), and $7.5 \mathrm{lbr}\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; in addition fine coupling was observed between 7 - and $7^{\prime}-\mathrm{H}$ and $9-$ and $9^{\prime}-\mathrm{H}$.
(6E,8Z,13Z, 15E)-2,5:17,20-Diepoxycycloeicosa-
$2,4,6,8,13,15,17,19$-octaenone (13).-Lithium ethoxide [from lithium (69.4 mg)] in absolute ethanol (21.3 ml) was added over 1.5 h to the diacrolein (10) (1.35 g) and the phosphonium salt (9) (3.77 g). Chromatography over silica gel gave the ketone (13) $(315.0 \mathrm{mg}, 20.6 \%$). It failed to crystallise from a variety of solvents and precipitated from cold methanol as a yellow amorphous solid, m.p. 114-120 (Found: $M^{+}, \quad 306 \cdot 1260 .{ }^{12} \mathrm{C}_{20}{ }^{1} \mathrm{H}_{18}{ }^{16} \mathrm{O}_{3}$ requires M, $306 \cdot 1256$), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 286 \operatorname{sh}(\varepsilon 16,500), 297(45,000)$, and $310 \mathrm{sh} \mathrm{nm}(30,300)$ with tailing into the visible region, $\tau \dagger 2 \cdot 87$ (2 H , dd, $J_{7,8}=J_{7^{\prime}, 8^{\prime}} 10 \cdot 3, J_{6,7}=J_{6^{\prime}, 7^{\prime}} 15 \cdot 8 \mathrm{~Hz}$, 7 - and $\left.7^{\prime}-\mathrm{H}\right), 2 \cdot 48$ and $3.56\left(4 \mathrm{H}, \mathrm{ABq}, J_{3.4}=J_{3^{\prime} .4^{\prime}} 3.5 \mathrm{~Hz}\right.$, $3-, 3^{\prime}-, 4-$, and $4^{\prime}-\mathrm{H}$), $3.54\left(\mathrm{~d}, 2 \mathrm{H}, J_{6.7}=J_{6^{\prime}, 7^{\prime}} 15 \cdot 8 \mathrm{~Hz}, 6-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 3.77\left(2 \mathrm{H}, \mathrm{dd}, J_{7.8}=J_{7^{\prime}, 8^{\prime}} 10 \cdot 3, J_{8.9}=J_{8^{\prime}, 9}\right.$ $11 \cdot 0 \mathrm{~Hz}, 8$ - and $8^{\prime}-\mathrm{H}$), $4 \cdot 22 \mathrm{br}\left(2 \mathrm{H}, \mathrm{dt}, J_{8,9}=J_{8^{\prime}, 9^{\prime}} 11 \cdot 0\right.$, $J_{9 . \mathrm{OH}_{2}}=J_{9^{\prime}, \mathrm{CH}_{2}} 9.0 \mathrm{~Hz}, 9-$ and $\left.9^{\prime}-\mathrm{H}\right), 7.87(4 \mathrm{H}, \mathrm{m}$, allylic $\left.\mathrm{CH}_{2}\right)$, and $8.36\left(2 \mathrm{H}, \mathrm{m}\right.$, homoallylic $\left.\mathrm{CH}_{2}\right)$; in addition there was fine coupling between 8 - and $8^{\prime}-\mathrm{H}$, and the allylic protons, and between 7 - and $7^{\prime}-\mathrm{H}$, and $9-$ and $9^{\prime}-\mathrm{H}$.
(5E,7Z,10Z,12E)-1,4:14,17-Diepoxycyclo-octadeca-
$1,3,5,7,10,12,14,16$-octaene (14).-The ketone (11) ($14 \cdot 1 \mathrm{mg}$) was reduced with lithium aluminium hydride (70 mg) and aluminium chloride (10 mg) in the usual way. The alkane (14) ($10.0 \mathrm{mg}, 74.7 \%$) precipitated from pentane at -78°, as an amorphous cream solid, m.p. 130- 133° (Found: M^{+}, 264•1151. ${ }^{12} \mathrm{C}_{18}{ }^{1} \mathrm{H}_{18}{ }^{16} \mathrm{O}_{2}$ requires $\left.M, 264 \cdot 1150\right)$, $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ 284sh ($\varepsilon 39,600$), $294(45,900)$, and $335 \mathrm{sh} \mathrm{nm}(7900)$, $\tau \dagger 2 \cdot 17$ ($2 \mathrm{H}, \mathrm{dd}, J_{6.7}=J_{6^{\prime} .7^{\prime}} 15.4, J_{7.8}=J_{7^{\prime} .8^{\prime}} 11.5 \mathrm{~Hz}, 7$ - and $\left.7^{\prime}-\mathrm{H}\right), 3.92\left(2 \mathrm{H}, \mathrm{dd}, J_{7,8}=J_{7^{\prime}, 8^{\prime}} 11 \cdot 5, J_{8.9}=J_{8^{\prime} .9^{\prime}} 10.5 \mathrm{~Hz}\right.$, 8 - and $\left.8^{\prime}-\mathrm{H}\right), 3.97$ and $4.04\left(4 \mathrm{H}, \mathrm{ABq}, J_{3,4}=J_{3^{\prime} .4^{\prime}} 3.5 \mathrm{~Hz}\right.$, $3-3^{\prime}, 4-$, and $\left.4^{\prime}-\mathrm{H}\right), 4.41\left(2 \mathrm{H}, \mathrm{dt}, J_{9 . \mathrm{CH}_{2}}=J_{9^{\prime} . \mathrm{CH}_{2}} 9 \cdot 0\right.$, $J_{8.9}=J_{8^{\prime} \cdot 9^{\prime}} 10.5 \mathrm{~Hz}, 9-$ and $\left.9^{\prime}-\mathrm{H}\right), 6.07 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ between furan rings), and $6.72 \mathrm{br}\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ remote from furan rings); in addition there was fine coupling between 3 - and $3^{\prime}-\mathrm{H}$, and the methylene protons, and between 7 and $7^{\prime}-\mathrm{H}$, and $9-$ and $9^{\prime}-\mathrm{H}$.
(5E,7Z,11Z,13E)-1,4:15,18-Diepoxycyclononadeca-$1,3,5,7,11,13,15,17$-octaene (15).-The ketone (12) (86.9 mg) was reduced with lithium aluminiam hydride (220 mg) and
aluminium chloride (100 mg) in the usual way. The alkane (15) $\quad(50.5 \mathrm{mg}, 61.0 \%)$ crystallised from light petroleum at -78° as cream prisms, m.p. $141-143^{\circ}$ (Found: $\quad M^{+}, \quad 278 \cdot 1307 . \quad{ }^{12} \mathrm{C}_{19}{ }^{1} \mathrm{H}_{18}{ }^{16} \mathrm{O}_{2}$ requires M, 278.1307), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 286$ ($\varepsilon 55,600$), 297 (71,500), and $340 \mathrm{~nm}(10,200), \tau \dagger 2 \cdot 67\left(2 \mathrm{H}, \mathrm{dd}, J_{7.8} \equiv J_{7^{\prime}, 8^{\prime}} 10 \cdot 3, J_{8,7}=\right.$ $J_{6^{\prime}, 7^{\prime}} 15 \cdot 1 \mathrm{~Hz}, 7-$ and $\left.7^{\prime}-\mathrm{H}\right), 3.74\left(2 \mathrm{H}, \mathrm{d}, J_{6.7}=J_{6^{\prime} .7^{\prime}} 15 \cdot 1 \mathrm{~Hz}\right.$, $6-$ and $\left.6^{\prime}-\mathrm{H}\right), 3.85\left(2 \mathrm{H}, \mathrm{dd}, J_{7.8}=J_{7^{\prime} \cdot 8^{\prime}} 10 \cdot 3, J_{8.9}=J_{8^{\prime}, 9^{\prime}}\right.$ $11.7 \mathrm{~Hz}, 8^{\prime}-$ and $\left.8^{\prime}-\mathrm{H}\right), 3.93 \mathrm{br}\left(4 \mathrm{H}, \mathrm{s}, 3-, 3^{\prime}, 4-\right.$, and $\left.4^{\prime}-\mathrm{H}\right)$, $4.33\left(2 \mathrm{H}, \mathrm{m}, 9\right.$ - and $\left.9^{\prime}-\mathrm{H}\right), 6.03 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ between furan rings), and $7.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ remote from furan rings) ; in addition fine coupling was observed between the 3 - and $3^{\prime}-\mathrm{H}$, and the methylene protons, and between 7 - and $7^{\prime}-\mathrm{H}$, and $9-$ and $9^{\prime}-\mathrm{H}$.
(5E,7Z,12Z,14E)-1,4:16,19-Diepoxycycloeicosa-$1,3,5,7,12,14,16,18$-octaene (16).-The ketone (13) ($101 \cdot 0 \mathrm{mg}$) was reduced with lithium aluminium hydride (300 mg) and aluminium chloride (60 mg) in the usual way. The alkane (16) $(71.8 \mathrm{mg}, 74.5 \%)$ crystallised from light petroleum as cream prisms which changed to long needles at $>150^{\circ}$, m.p. 173-177 (Found: M^{+}, 292.1168. ${ }^{12} \mathrm{C}_{20}{ }^{1} \mathrm{H}_{20}{ }^{16} \mathrm{O}_{2}$ requires $M, 292 \cdot 1163)$, $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 275 \mathrm{sh}(\varepsilon 27,800), 287$ $(59,400), 298(83,300)$, and $330 \mathrm{sh} \mathrm{nm}(10,700), \tau \dagger 2.72(2 \mathrm{H}$, dd, $J_{6,7}=J_{6^{\prime}, 7^{\prime}} 15 \cdot 0, J_{7.8}=J_{7^{\prime}, 8^{\prime}} 11 \cdot 0 \mathrm{~Hz}, 7$ - and $\left.7^{\prime}-\mathrm{H}\right)$, $3.82\left(2 \mathrm{H}, \mathrm{d}, J_{6.7}=J_{6^{\prime} .7^{\prime}} 15.0 \mathrm{~Hz}, 6-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 3.92(2 \mathrm{H}$, dd, $J_{8,9}=J_{8^{\prime}, 9^{\prime}} 11 \cdot 0, J_{7,8}=J_{7^{\prime} \cdot 8^{\prime}} 11 \cdot 0 \mathrm{~Hz}, 8$ - and $\left.8^{\prime}-\mathrm{H}\right)$, $3.98 \mathrm{br}\left(4 \mathrm{H}, \mathrm{s}, 3-3^{\prime}-, 4-\right.$, and $\left.4^{\prime}-\mathrm{H}\right), 4.36\left(2 \mathrm{H}, \mathrm{dd}, J_{8.9}=\right.$ $J_{8^{\prime} .9^{\prime}} 11 \cdot 0, J_{9, \mathrm{CH}_{2}}=J_{9^{\prime}, \mathrm{CH}_{2}} 9.0 \mathrm{~Hz}, 9-$ and $\left.9^{\prime}-\mathrm{H}\right), \quad 6.08 \mathrm{br}$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ between furan rings), $7 \cdot 70\left(4 \mathrm{H}, \mathrm{m}\right.$, allylic $\left.\mathrm{CH}_{2}\right)$, and $8.42\left(2 \mathrm{H}, \mathrm{m}\right.$, homoallylic $\left.\mathrm{CH}_{2}\right)$; in addition there was fine coupling between 3 - and $3^{\prime}-\mathrm{H}$, and the methylene protons, and between 7 - and $7^{\prime}-\mathrm{H}$ and 9 - and $9^{\prime}-\mathrm{H}$.

2-Isopropoxymethylenecyclohexanone (18).-A mixture of 2-hydroxymethylenecyclohexanone (17) (50 g), dry potassium carbonate (100 g), dry DMF (150 ml), and 2bromopropane (49 g) was heated on a steam-bath for 7 h with periodic shaking. After cooling, the salts were filtered off and washed with ether $(600 \mathrm{ml})$. The filtrate was washed with water, ice-cold, dilute sodium hydroxide solution $(2 \times)$, and saturated brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left on removal of the solvent was fractionated under diminished pressure and gave the ketone (18) (47.8 g, 71.7%) as a pale yellow liquid, b.p. $82-84^{\circ}$ at 0.4 mmHg (lit., ${ }^{20} 64-65^{\circ}$ at 0.2 mmHg).
1-Ethynyl-2-isopropoxymethylenecyclohexanol (19).-The foregoing ketone (18) (63 g) was treated with lithium acetylide-ethylenediamine after the manner of Pilling and Sondheimer. ${ }^{13}$ The ethereal extract was washed with water $(2 \times)$, and with saturated brine, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left on removal of the solvent was fractionated under reduced pressure and afforded the alcohol (19) ($32.0 \mathrm{~g}, 44.0 \%$) as a pale yellow oil, b.p. $77-79^{\circ}$ at 0.2 mmHg , which solidified on cooling below room temperature (Found: C, 74.35; H, 9.25\%; $M^{+}, 194$. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $\left.74 \cdot 2 ; \mathrm{H}, 9 \cdot 35 \% ; M, 194\right)$, $\tau(60 \mathrm{MHz}$, $\left.\mathrm{CCl}_{4}\right) 3.57 \mathrm{br}(1 \mathrm{H}$, s, olefinic H$), 6.08\left(1 \mathrm{H}\right.$, sept, $\left.\mathrm{Me}_{2} \mathrm{CH}\right)$, $7.50(\mathrm{lH}$, s, acetylenic H$)$, and $7.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\mathrm{D}_{2} \mathrm{O}-$ exchangeable OH), $8.28\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and $8.70(6 \mathrm{H}, \mathrm{d}, \mathrm{Me})$.
Oxidative Coupling of the Ethynyl-alcohol (19).-A stirred suspension of copper(II) acetate monohydrate (40 g) in pyridine (150 ml) at 60° (bath temperature) was treated over 10 min with a solution of the alcohol (19) (6.7 g) in pyridine (50 ml). After 3 h the cooled mixture was filtered

[^5]and the separated salts were washed with ether $(800 \mathrm{ml})$. The filtrate was added to 10% hydrochloric acid (11) and it was extracted with the ether washings. The extract was added to m-sulphuric acid (1.5 l) and the mixture was stirred rapidly for 17 h . The separated aqueous layer was extracted with ether $(2 \times)$, and the combined ethereal layers were washed with water $(2 \times)$, and with saturated brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left on removal of the solvent was pre-adsorbed from ether on silica gel and chromatographed over a column of silica gel (total 4×45 cm) with $0-5 \%$ ethyl acetate-light petroleum. Early fractions gave 1,4-bis-(2-formylcyclohex-1-enyl)buta-1,3-diyne (20) ($1.386 \mathrm{~g}, 30 \cdot 2 \%$) which crystallised from light petroleum as prisms, m.p. $91-92.5^{\circ}$ (Found: C, $80.95 ; \mathrm{H}, 6.85$. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 81 \cdot 15 ; \mathrm{H}, 6.8 \%\right)$, $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 228 \mathrm{sh}$ ($\varepsilon 15,000), 236(16,000), 253$ sh $(13,600), 265(15,800), 278$ sh $(18,000), 285(18,200), 308(17,000), 327(19,200)$, and 352 nm $(14,800), \tau(60 \mathrm{MHz})-0.10(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.67(8 \mathrm{H}, \mathrm{m}$, allylic H), and 8.33 (m, homoallylic H). Later fractions gave 1,4-bis-(6-formylcyclohex-1-enyl)buta-1,3-diyne (21) $(675.7 \mathrm{mg})$ mixed with a trace of the isomer (20), which was easily removed by crystallisation. The cross-conjugated dicarbaldehyde (21) crystallised from light petroleum as yellow blades, m.p. 109—110 (Found: $M^{+}, 266 \cdot 1304$. ${ }^{12} \mathrm{C}_{18}{ }^{1} \mathrm{H}_{18}{ }^{16} \mathrm{O}_{2}$ requires $\left.M, \quad 266 \cdot 1307\right)$, $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 234$ ($\varepsilon 16,000$), $282(19,200), 288(18,200)$, 315sh $(18,200), 334$ $(21,000)$, and $358 \mathrm{~nm}(16,000), \tau-0 \cdot 13(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 3 \cdot 46$ $(2 \mathrm{H}$, distorted $\mathrm{t}, J 2 \cdot 5 \mathrm{~Hz}$, olefinic H$), 7 \cdot 19(4 \mathrm{H}, \mathrm{m}$, allylic H), and $7.39-8.44(10 \mathrm{H}$, homoallylic and methine H).

Reaction of 1,4-Disodiobuta-1,3-diyne with 2-Isopropoxymethylenecyclohexanone (18).-A stirred suspension of sodamide [from sodium (1.2 g) and iron(iil) nitrate (20 mg)] in boiling liquid ammonia (50 ml) was treated with $1,4-$ dichlorobut-2-yne ${ }^{21}(1.48 \mathrm{~g})$, followed after 1 min by the cyclohexanone (18) ($4 \cdot 0 \mathrm{~g}$). After 1 h the dark mixture was diluted with tetrahydrofuran (110 ml) and the ammonia was allowed to evaporate. Water (100 ml) was then added and the mixture extracted with ether $(2 \times)$. The extracts were added to sulphuric acid $(0.75 \mathrm{M} ; 11)$ and the mixture was stirred for 2 h . The crude oily product obtained as before was distilled at 100° (bath temperature) and 0.05 mmHg and the distillate was passed through a short column of silica gel with 10% ethyl acetate-light petroleum as eluant. This gave a mixture of the isomeric aldehydes (20) and (21) (300 mg) as indicated by t.l.c. and n.m.r. spectroscopy. Extending the reaction time failed to improve the yield.
(6E,16E)-2,5:18,21-Diepoxy-8,9:14,15-bis(tetramethylene)-10,11,12,13-tetradehydro[21]annulenone (24).-(a) With lithium methoxide as base. Lithium methoxide [from lithium $(13.9 \mathrm{mg})]$ in absolute methanol (12.8 ml) was added over 2 h to the salt (1) (785 mg) and the dicarbaldehyde (20) $(226 \mathrm{mg})$ in dry DMF (60 ml) at 80° (bath temperature). The solution was stirred for a further 0.5 h . Early fractions from chromatography over silica gel were combined and applied in dichloromethane to 2 preparative t.l.c. (p.1.c.) plates which were developed once with 10% ethyl acetatelight petroleum. The most intense band yielded 2 -[3-(3-methoxy-1,3,4,5,6,7-hexahydrobenzofuran-1-ylidene)prop-1-ynyl]cyclohex-1-enecarbaldehyde (26) ($18.9 \mathrm{mg}, 6.3 \%$) as a yellow gum (Found: $M^{+}, 298 \cdot 1557 .{ }^{12} \mathrm{C}_{19}{ }^{1} \mathrm{H}_{22}{ }^{16} \mathrm{O}_{3}$ requires $M, 298 \cdot 1569$), $\tau(60 \mathrm{MHz})-0.28$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), $4.17 \mathrm{br}(1 \mathrm{H}$, s , methine H$), 5.32(1 \mathrm{H}, \mathrm{s}$, olefinic H$), 6.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $7.73(8 \mathrm{H}, \mathrm{m}$, allylic H$)$, and $8.30(8 \mathrm{H}$, homoallylic H$)$.
${ }^{21}$ A. W. Johnson, J. Chem. Soc., 1946, 1009.

Later fractions were combined and applied in dichloromethane to 2 p.l.c. plates which were developed once with 15% ethyl acetate-light petroleum. The red band afforded the macrocycle (24) $(8.9 \mathrm{mg}, 2.1 \%)$, identical with that described below.
(b) With 1,5-diazabicyclo[4.3.0]non-5-ene as base.-A solution of 1,5 -diazabicyclo[4.3.0]non-5-ene (124 mg) in dry DMF (15 ml) was added dropwise over 2.5 h to a stirred solution of the salt (1) (394 mg) and the dicarbaldehyde (20) $(133 \mathrm{mg})$ in dry DMF (80 ml) at 70° (bath temperature). The solution was stirred at 70° (bath temperature) for a further 1 h . Early fractions from chromatography over silica gel afforded bis-(4,5,6,7-tetrahydroisobenzofuran-1-yl)acetylene (27) ($22 \mathrm{mg}, 16.5 \%$) which crystallised from dichloromethane-light petroleum as pale yellow needles, m.p. $149-151 \cdot 5^{\circ}$ (Found: $M^{+}, 266 \cdot 1304 .{ }^{12} \mathrm{C}_{18}{ }^{1} \mathrm{H}_{18}{ }^{16} \mathrm{O}_{2}$ requires $M, 266 \cdot 1307)$, $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 265(\varepsilon 13,800)$, 296sh $(18,400), 306(20,000), 315 \mathrm{sh}(17,000)$, and $328 \mathrm{~nm}(13,600)$, $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 2180,1020$ (furan ring breathing), and $918 \mathrm{~cm}^{-1}$, $\tau(60 \mathrm{MHz}) 2 \cdot 98 \mathrm{br}(2 \mathrm{H}, \mathrm{s}$, furan H$), 7 \cdot 45(8 \mathrm{H}, \mathrm{m}$, allylic H$)$, and $8.30(8 \mathrm{H}, \mathrm{m}$, homoallylic H$)$. Later fractions afforded the [21]annulenone (24) ($25.3 \mathrm{mg}, \mathbf{1 2 . 0 \%}$) which crystallised from dichloromethane-light petroleum as maroon prisms, decomp. $>270^{\circ}$ without melting (Found: $M^{+}, 420 \cdot 1727$. ${ }^{12} \mathrm{C}_{29}{ }^{1} \mathrm{H}_{24}{ }^{16} \mathrm{O}_{3}$ requires $M, 420 \cdot 1725$), $\lambda_{\text {max. }}$ ($\mathrm{Et}_{2} \mathrm{O}$) 325 sh ($\varepsilon 64,500$), $338(84,000)$, and $394 \mathrm{sh} \mathrm{nm} \mathrm{(8400)} \mathrm{with} \mathrm{tailing}$ into the visible region; $\tau 2.27$ and $2.33\left(4 \mathrm{H}, \mathrm{ABq}, J_{6,7}=\right.$ $J_{16.17} 17.0 \mathrm{~Hz}, 6-, 7-, 16-$, and $\left.17-\mathrm{H}\right), 2.76$ and $3.68(4 \mathrm{H}$, $\mathrm{ABq}, J_{3.4}=J_{19.20} 3.8 \mathrm{~Hz}, 3-, 20-, 4-$, and $19-\mathrm{H}$), 7.87 (8 H , m , allylic H), and $8.40(8 \mathrm{H}, \mathrm{m}$, homoallylic H$)$.

1'-Ethylenebis-(4,5,6,7-tetrahydroisobenzofuran) (28).—The foregoing acetylene (27) (123 mg) was hydrogenated over 10% palladised charcoal (15 mg) in ethanol. After the rapid uptake of 2 mol . equiv. of hydrogen the catalyst was filtered off and washed with ethyl acetate (100 ml). The total filtrate was washed with water and with saturated brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left after removal of the solvent was applied in dichloromethane to a p.l.c. plate which was developed once with light petroleum. The most intense band yielded the alkane (28) ($34.5 \mathrm{mg}, 32 \cdot 4 \%$) which crystallised from light petroleum as prisms, m.p. $97-98^{\circ}$ (Found: C, $80 \cdot 2 ; H, 8.0 \% ; M^{+}, 270 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$ requires C, $79.95 ; \mathrm{H}, 8.2 \% ; M, 270)$, $\tau(60 \mathrm{MHz}) 3 \cdot 12 \mathrm{br}$ $(2 \mathrm{H}, \mathrm{s}$, furan H), $7 \cdot 30(4 \mathrm{H}, \mathrm{s}$, ethane H), $7 \cdot 72(8 \mathrm{H}, \mathrm{m}$, allylic H), and $8.45(8 \mathrm{H}, \mathrm{m}$, homoallylic H).
(5E, 15 E)-1,4:17,20-Diepoxy-7,8:13,14-bis(tetramethylene)-cycloheneicosa-1,3,5,7,13,15,17,19-octaene-9,11-diyne (25).The annulenone (24) (17.8 mg) was reduced with lithium aluminium hydride (50 mg) and aluminium chloride (20 mg) in the usual way. The homoannulene (25) ($16.6 \mathrm{mg}, 96.5 \%$) crystallised from cold light petroleum as small, yellow prisms, m.p. 270-271 ${ }^{\circ}$ (decomp.) (Found: $M^{+}, 406 \cdot 1928$. ${ }^{12} \mathrm{C}_{29}{ }^{1} \mathrm{H}_{28}{ }^{16} \mathrm{O}_{2}$ requires $\left.M, 406 \cdot 1933\right)$, $\tau \dagger \mathrm{l} .86$ and $3.85(4 \mathrm{H}$, $\mathrm{ABq}, J_{6,7}=J_{16,17} 16.0 \mathrm{~Hz}, 7-, 16-, 6-$, and $17-\mathrm{H}$), 3.99 br ($4 \mathrm{H}, \mathrm{s}, 3$-, 4 -, $19-$, and $20-\mathrm{H}$), $6.00 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.79(8 \mathrm{H}$, m , allylic CH_{2}), and $8.38(8 \mathrm{H}, \mathrm{m}$, homoallylic H$)$.
(6Z,12E,14Z)-2,5:8,11:16,19-Triepoxy[19]annulenone (34). -Lithium methoxide [from lithium (69.4 mg)] in absolute methanol ($\mathbf{1 7} \cdot 1 \mathrm{ml}$) was added over 2.5 h to the salt (1) $(3.93 \mathrm{~g})$ and the acrolein (33) (750 mg) in dry DMF (120 ml) at 90° (bath temperature). The solution was then stirred for a further 0.75 h . Chromatography over silica gel gave the [19]annulenone (34) ($36.3 \mathrm{mg}, 3 \cdot 1 \%$) which crystallised from ethanol as small, brick-red prisms (Found: M^{+}, 304.0732 . ${ }^{12} \mathrm{C}_{19}{ }^{1} \mathrm{H}_{12}{ }^{16} \mathrm{O}_{4}$ requires $M, 304 \cdot 0736$), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right)$
$267(\varepsilon 31,000), 287 \operatorname{sh}(30,000), 328(38,000), 385(20,000), 440$ $(20,000), 487(13,000)$, and $530 \mathrm{~nm}(3700)$; n.m.r., see Discussion section.
(5Z, 11E, 13Z)-1,4:7,10:15,18-Triepoxycyclononadeca-
1,3,5,7,9,11,13,15,17-nonaene (35).—The annulenone (34)
$(39.2 \mathrm{mg})$ was reduced with lithium aluminium hydride $(100 \mathrm{mg})$ and aluminium chloride $(10 \mathrm{mg})$ in the usual way.

The homoannulene (35) ($34 \cdot 7 \mathrm{mg}, 92.8 \%$) was obtained as a yellow gum (Found: $M^{+}, 290 \cdot 0949 .{ }^{12} \mathrm{C}_{19}{ }^{1} \mathrm{H}_{14}{ }^{16} \mathrm{O}_{3}$ requires $M, 290 \cdot 0943$); n.m.r., see Discussion section.

We thank the Australian Research Grants Committee for financial support.
[4/888 Received, 6th May, 1974]

[^0]: ${ }^{5}$ M. Iyoda and M. Nakagawa, Tetrahedron Letters, 1973, 4743.
 ${ }^{6}$ B. A. Hess, jun., L. J. Schaad, and C. W. Holyoke, jun., Tetrahedron, 1972, 28, 5299.
 ${ }^{7}$ T. M. Cresp, M. V. Sargent, and P. Vogel, J.C.S. Perkin I, 1974, 37.

[^1]: * For convenience, the annulenone numbering system [e.g. as in (4)] is used for macrocycles throughout the Discussion section: this differs from the numbering given in the systematic names in the Experimental section.
 ${ }^{8}$ S. Winstein, P. Carter, F. A. L. Anet, and A. J. R. Bourn, J. Amer. Chem. Soc., 1965, 87, 5247.

[^2]: ${ }^{9}$ E. Vogel, R. Feldmann, H. Düwel, H.-D. Cremer, and H. Gunther, Angew. Chem. Internat. Edn., 1972, 11, 217.
 ${ }_{11} \mathrm{~K}$. Friedrich and H.-G. Henning, Chem. Ber., 1959, 92, 2756.
 ${ }^{11}$ L. Horner, H. Hoffmann, W. Klink, H. Ertel, and V. G. Toscano, Chem. Ber., 1962, 95, 581.

[^3]: ${ }^{12}$ C. Ainsworth, Org. Synth., Coll. Vol. IV, 1963, p. 536.
 ${ }_{13}$ G. M. Pilling and F. Sondheimer, J. Amer. Chem. Soc., 1971, 93, 1977.
 ${ }^{14}$ J. B. Armitage, E. R. H. Jones, and M. C. Whiting, J. Chem. Soc., 1951, 44.

[^4]: * For convenience the numbering system used in spectral assignments marked with a dagger (\dagger) is that shown in the structural diagram and not that used in the systematic name.

[^5]: ${ }^{20}$ R. B. Woodward and W. M. McLamore, J. Amer. Chem. Soc., 1949, 71, 379.

